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ABSTRACT

This paper describes a canonical procedure to approximate an arbitrary

family of C vector fields Ig I ... g } on with vector fields

91 "° ' on the same space Rd which generate a nilpotent Lie algebra.

Each can be either obtained from a Taylor expansion of the input-output

map for the control system

m

(*) gi(XU i  X(0) - 0~i-I

or computed directly as an asymptotic limit of the corresponding vector

field gi" A useful consequence is that every control system of the form (*)

can locally be regarded as an arbitrarily small C perturbation of a

nilpotent system on the same state space, up to a suitable linear rescaling of

coordinates.
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SIGNIFICANCE AND EXPLANATION

If a family of vector fields ' generates a nilpotent Lie

algebra, then the response of the control system

*(t) = ~~~i(x)ui(t), x(o) = 0 e
' i-i

can be written out explicitly in terms of integrals of the controls ui. This

and other nice consequences make nilpotency a highly desirable property from

the point of view of mathematical analysis.

T1he-pesent- a describes a canonical method to locally approximate any

family g" i ,g of vector fields by one which generates a nilpotent Lie

algebra. This is particularly useful in control theory, because it shows that

an arbitrary control system can locally be obtained from a small perturbation

of a nilpotent system, by a suitable rescaling of the coordinates.
f
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LOCAL ASYMPTOTIC APPROXIMATION OF NONLINEAR CONTROL SYSTEMS

Alberto Dreasan*

i . INTRODUCTION

This paper is concerned with an autonomous nonlinear control system of the form

a

c(t) - 1 q1(x(t))u1 (t), x(O) - o e Rd (1.1)

where the gi are C , globally bounded vector fields on R and

U(.) = (U-(),...,U3 ) e LI ((0,o)gr). The system (1.1) generates a smooth input-output

map * : u() + x(u,*) from LI ((0,C)iR ) into C0 (10,)R d). Explicitly computable

approximation* of # are of primary importance in the local study of (1 1). The p-th

order Taylor expansion 7P* of * about the null control was studied in [1,3]. In (8] it

is shown how the trajectories of (1.1) can be locally approximated by means of an

additional (nilpotent) system, say

U

i( - f(x(t))u,(t ) ,  x(0) - 0 e Rd '  
(1.2)

For certain applications, such as the computation of a local time-optimal feedback [2],

both approaches seem unsatisfactory. In general, TP$ is merely a sum of multilinear

Integral mappings from L
1 
Into C

0  
and does not arise as the exact input-output map of

any control system. The optiality of a given control ; under TPO cannot therefore be

tested by the Maximum Principle. On the other hand, the vector fields fI in (1.2)

represent a lifting of the gi ( - , in a usually higher dimensional space Rd
'
.

It is not always possible to determine a local property of (1.1) by studying (1.2), since

the two systems live on different spaces.

l stituto di Matematica Applicata, Univeraitl di Padova, 35100, Italy
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Using a singular perturbation technique, in this paper we derive a canonical procedure

to approximate the vector fields gi with a nilpotent family {gl...,gm) of vector

fields defined on the same state space Rd. The main construction is as follows. For

small c ) 0, the restriction of the map # to controls with support inside 10,C) can

be resealed to a map #C from LI([O,130P) into C
0
([o,1h;3

4
). This is achieved by

-1Imeans of the transformation t * C t of the time variable and by letting a suitable

family of dilations 6 act on the space variables. For each C ) 0, #* is thus the

input-output map generated by the control system

m

i(t) - g(x(tfluilt), x(O) - 0 e Rd , (1.3)
i-1

where the vector fields g are obtained from the gi after a rescaling of coordinates.
I£

As c 0, there exist a map ; and vector fields ji on R
d  

such that a * and

9, + gi together with all derivatives, uniformly on bounded sets. * is then the input-

output map corresponding to the control system

m

i(t) - ) g(x(t))u1 lt), x(O) " C • (1.4)
i-i

The vector fields ji have polynomial coefficients and are invariant under a 1-parameter

group of transformations. Moreover, without any assumption on the Lie algebra generated

by gl,...,g, it turns out that Lie G,.... m }  is always nilpotent, so that the

solutions of (1.4) can be written in closed form [7). This remarkable feature makes the

system (1.4) an attractive object for a detailed mathematical analysis. Indeed, since

(1.4) is obtained as a uniform limit of (1.3) as c 0, any property of (1.4) which is

retained under small C perturbations (41 yields a local property of (1.1).

-2-



2. PRELIMINARIES

In the following, we use 11 for the euclidean norm on Rd and 1.1 for the norm

in Banach spaces. The closed ball centered at x with radium r is denoted B(x,r),

while B indicates tensor product. Given two Banach spaces F and F, k ) 0, we denote

by Lk(EF) the space of continuous k-linear mappings A from B 2 - E B E B ... 9 E (k

times) into F with the operator norm

|A| sup{IA(vl,...,vk)IF ; IViIE  1, i - 1,...,k)

If Z B + F is a smooth mapping, its k-th Fr6chet derivative a a point u e 9 is

t $(u) e Lk(E;F). The k-th order Taylor expansion of * at the origin is then

Tk k 
u

T.(u) I v * -u](") - ]T DJ*(0)"

J-0

where u 1J1 - (u,u,. .. ,u) e E. The same notation Tkq is used for the k-th order Taylor
I

expansion of a vector field g on ad  at the origin. It was shown in (1] that the n-th

order Taylor expansion TnO of the input-output map 0 generated by (1.1) about the null

control can be obtained by computing the n-th Picard iterate for the approximate system

m

i(t) T1-lgi(x(t))ui(t), x(0) = 0 , (2.1)
i-I

discarding the terms of order >n. The multilinear integral mappings

I : L (0,) + C 0(0,-) arising from the above procedure were called in [1] integral

monomials. If 0 is k-linear, we say that U has order k. The first Picard iterate for

(2.1) is
IS t

P1 (u,t) I ) J gi(0)ui(s)ds •

i-1 0

In general, if the k-th Picard iterate for (2.1) is a sum of integral monomials, say

~Nlk)
Pk(u,t) - Ult) I

then Pk~l can again be written as a sum of terms of the type

-3-
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v(u,t) - I Di gi(O) . (U (lUfal ... ,#i (u,s))ui sds (2.2)

0

where 0 4 j < n, 1 C ± C m. If has order vj (I - 1,...,j), then P in (2.2) has

order v + + v + 1. The above construction canonically determines an increasing

sequence of subepces zp S a d , namely Z0 - {0), Z, , span{g(0) i - ,i...,ml and

inductively

Z. - span{D gt(O) (v 1'... 1 vj); 1 4 i C m, 0 I C < p<

v, e zp,P + '
+ p <  (2.3)

pj

Comparing (2.3) with (2.2), it is clear that

TP*(u)(t) e z (2.4)

for all p ; 0, u e L1, t o 0. Indeed, Z p is precisely the subspace of Rd  spanned by

the coefficients of the integral monomials of order • p in the Taylor expansion of

about the null control.

I
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3. A CLASS OF NILPOTINT LIS ALGnIRAS

All of the vector fields arising from the asymptotic limit procedure considered in

this paper generate a special type of Lie algebras which we now briefly describe. For a

different approach, based on the dual action of vector fields as derivations on C7

functions, see [6). Given an orthogonal decomposition ad . W1 9 ... 9 W-, let w be
p p

the canonical projection of a
d  

and - the differentiation w.r.t. the p-th component
ax

of x. Define L (Lrt for r • 0) to be the set of all smooth vector fields

f = (fl,...,f') on M
d  

such that

3'kf
q --= 0

ax ... axP, Pk

whenever k 0 0, 1 4 q 4 p and p, + ... 
+ Pk 

• q (p, + " + pk ' q - r). For r p,

Lr  contains only the null vector field. From the above definitions it follows

LEMMA 1. L is a finite dimensioi.al nilpotent Lie algebra of vector fields with

polynomial components, with the usual bracket operation [f,g] - (Dg) 0 f - (Df) 0 g,

and L - L0 2 L1 .2 ... 2 L7 t is a decreasing sequence of ideals, indeed

[Lr*Lsl S Lr+s+ 1  (3.1)

PROOF. If f e L, any p-th derivative of f vanishes identically. Hence L

contains only vector fields whose components are polynomials of degree less than j. In

particular. L is finite dimensional. To prove (3.1), let f e Lr , g e Ls, k ) 0,

qp ... pk 1,.. ., with p, + ... + pk ; q-r-s-t. Denoting f = Vq1f gq I qf, the

q-th components of f and g, one has

J(WqDf) * g] - k* (3.2)

x ... I; ,qI . -ax ... ax - (5- . q) g.
P1 Pk P1 Pk ll f)

4 Notice that the right-hand side of (3.2) can be written as a sum of terms having the form

3 h+1 yk-h

, ... , fq] ' , ... x-, gi] (3.3)
PO(1 ) PO(h) aPo(h+l) Pa(k)

Ii --



where 0 ( h 4 k, ( i p and is a permutatlon of the set (,....,k). if

P 00) 
+ 

** 
+ 
POWh) 

+ 
i " r . the first term In the tensor product (3.3) vanishes

identically. Otherwise P al) + "' + PO(h) 4 q-r-i- , hence

PO(h+l) 
+ 

" + POk) (q-r-s-) - (q-r-i-a) - I -

and the second factor in (3.3) vanishes. Therefore (Df) e g e Lr+,+t. Similarly

(Dq) * f e Lr+.+l, hence (3.1) holds, proving the nilpotency of L.

if



4.* STATEMEZNT OF THE MA IN RESULT

With the increasing sequence of subspaces zp c3a defined at (2.3) one can associate

an orthogonal decomposition

Rd W S ... 0 W- (4.1)1p
as follows. Fix any p ~ .For I < p < p let W p be the orthogonal complement of

ZP1in Zand let WP be the orthogonal complement of Zp.1  in Rd1. This clearly

yields (4.1). The canonical projection of Rd1 onto W. is denoted x p In addition to

the input-output map *u(-) + x(u,*) generated by (1.1), for 0 < c 1C I we can now

define the rescaled maps 4 C u(I) + x (u,*) by setting

C p
x (u,t) I C 1!V (x(eu,t)) .(4.2)

P-1

By direct computation one checks that

i(u't) = gl(xC(u,t))u i(t), x~ (u.0) -0 (4.3)

with

C (x) )p C I-P T[g ( Cj ew(X))] (4.4)

our major interest is in the behavior of the rescaled system (4.3) as C 0.

j THEOREM. Let gi (i 1...m be C", globally bounded vector fields onRd and

let * , g be defined by (4.2), (4.4), corresponding to the decomposition (4.1)

obtained from (2.3). Then as c + 0

i) 0C converges to 4u(*) + ;(u,*), defined by

p

0(u)(t) I Ti p T *(u)(t)] (4.5)

More precisely, fralk00.D4 tend. to D 4uniformly on bounded subsets of

L 1 ( 0,eu?).-7-



ii) For all ±1, 911m converges to g, defined by

)p P -1I gV (0)(W W O),... w Cx) ] (4.6)

-i W 1  1 - aer p,j) ji gi Q(1) O(j)

r(p,j) being the set of all maps 0 : {1,.-.,j) + I..p for which

u(1 + .. o~) -p -1. r al I ) , tends to tD gi uniformly on bounded

subsets ofRd

iii) For all u(*) e L ,the trajectory t + ;(u,t) - i(u)(t) is the solution of

m~)-~ gi(x(t))ui(t)e X(0) =0 .V7

iv) L..e is nilpotent.



5. PROOF or TH rHEORZK

Fix any p e {i,.o.,p} and write

p P

" e-P (TPo(cu)(t)) + C-PW (n(cu)(t))
P p

where n - 4 - TPO, the remainder of the p-th order Taylor expansion of * about the null

control, is a C map from LI((0,-);R ) into C([0,3}iR d ) with iM(0 ) = 0 for

0 1 j 4 p. By (2.4), w TP_'I S 0. Therefore, i TPi is a homogeneous p-linear mapping,P p

and

e -PWp *P4(,u) -w TPO(u) V 0 . (5.1)

To prove i) it now suffices to show that, for all k > 0, CPDk( n) (u) converges to

zero uniformly as u ranges on bounded subsets of L1, 11 being the map u + n(cu). The

assumptions on n Imply the existence of a constant C > 0 such that

ID k n(u) C min{u|P-k+1 ,1)

whenever lul 4 C_ .  If U is a bounded subset of L , choose c0 > 0 so small that

c0U _ B(O,C' ). If u e U and 0 < C 4 E0 " then

|CPD k(WI nl)(u)| C Ck-pNDkn(Eu)| 4 c~k-P. in( p-k+11u|,11 (5.2)

In both cases k > p or k ( p, as C + 0 the right-hand side of (5.2) converges to zero

uniformly on U. This establishes I). The proof of ii) is iimilar: fix i e {1,...,m}

and p e {1,o00,pl. Using a Taylor expansion of gi of order 1 - I with remainder

h(-), from (4.6) one obtains

pgC(x) = - D, (-)( W o) O(j)
I g 1  G(j)

, -1 £ ~j ~ g()(O 1) (x)... Coj,~)x))]

+ w p h( I WIx)) (5.3)
L- 1

W where r is the set of all maps a from {1 .... into {1,...,p} and h is a C

vector field on Rd  with DJh(0) - 0 for j - l,...,p - 1. The generic term in the first

summation in (5.3) is a homogeneous J-linear map from Rd into Wp of the form

-9-
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V Y(ax) - T [I -j. ClPDi 0)(C (l)I (,)C ) ... l .(.)..(.x))]

" 0 C)C( ((1 ix ) (x))]

l-P+S
with .- 0(1) + ... + O(J). If s p, then lim Y(c,x) - li e Y(1,x) - 0 and

C+0 C 0

the same holds for all derivatives of Y w.r.t. x, uniformly on bounded subsets of

td . If S - p - 1, then Y(e,x) - Y(1,x) does not depend on e. If So < p - 1, since

,(,)(x) e ZO() (I - 1,...,j), the definition of Zp-1 implies Y(e,x) e Z,. 1 , hence

w1 T(e,x) - 0. To prove ii) it now suffices to show that the second umsmand on the

right-hand side of (5.3) converges to zero as £ + 0. For every k ) 0, the assumptions

on h(*) imply the existence of a constant C > 0 for which

IDkh(x)I ( C.min(Ixlpk, 1} (5.4)

whenever 1xl ( C1 . Let V be a bounded subset of R and choose £0 e (0,1) so small
that £0V1- B(0,C I). For 0 < £ ( £0, set h Cx) - h( C CPx)). From (5.4) it

p-1

follows the estimate

Cl -PDkhe(x)l - ¢l"Psup{iDkhc (x).y [k ] l y k 1 Y e Rd\10}

-- p p
' C"PSup{ID h( I epw p (x)).( I tPWp (Y))Lk1 1Yl-kl y* 01

S- p-1 p

4 C Psup{C'min£cxl , }11.ICyl k . lyl'k y * o1
j' ccl-p+kmin{ p -kIxlp k,l } (5.5)

In both cases k ) or k < j, the right-hand side of (5.5) converges to zero rniformly

on V, as c + 0. Since the above holds for every i and p, ii) is proved. Using i)

and ii), iii) follows from (4.3), letting C + 0 in the equality

t m I

x ut) I ) gi(x (u,s))u(s)ds
0 i.1

Finally, we check that each ji belongs to the Lie algebra L defined in 13,

corresponding to the decomposition (4.1). Let k 0 0, q,p,,...,p, e

P1 +' + pk q. By (4.6), the q-th component of gi is a sum of terms of the form

-10-
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6(x) = ... (I (x),...,w (x))I
J1 q ±i q

with q 
+  

+ qJ q - 1. We therefore have

ax ... ax )=0
PI Pk

for all x e unless there exists an injection 0 of the set {1,...,k) into the set

{1,...,J) such that q0(f) = pI for all t = 1,...,k. But the existence of such an

injection would contradict the assumption p + ... 
+ pk ), q. Therefore g1 e L for all

i 6 (1,....m). By Lemma 1, Lie (q1 ......3 ) is a aubalgebra of a nilpotent Lie algebra.

This completes the proof.

I i-11
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6. CONCLUDING RIEARKS

The above results also apply to control systems

3

i(t) - Xi(x(t))ui(t), x(0) - (6.1)
i-I

on a d-dimensional manifold N. Indeed, if the Lie algebra generated by X1 1...,X m  has

full rank at E, then among - iterated brackets of the Xi's one can choose d vector

fields, say Y1,...,Yd, which are linearly independent at . The map

e s ('*...,d )  (*xp s 1 ) * ... * (exp sdyd)(E) (6.2)

thus defines a local chart of a neighborhood of in H [S1. The asymptotic expansion

considered in 14 can now he performed for the system on ad corresponding to (6.1) in this

canonical chart.

The present approximation technique enables one to study local problem concerning

(1.1) by first solving the corresponding problem for the system (4.7) and by then proving

that the structure of the solutions is "stable" under suitably small C perturbations of

the vector fields gi" This approach is adopted in [2] to study the local time-optimal

stabilizing feedback for a generic three-dimensional nonlinear system with scalar control.

The analysis of the control system (4.7) takes advantage from the explicit

representation (4.5) of trajectories in terms of integrals of the controls. One can also

make use of the special properties of the vector fields gi in connection with the family

of dilations 8 E iR
d 

+ *R,

8€(x) = w (x)
p-1 P

(see [6]). Some useful consequences deserve mention. Pix a compact convex set n C Ir

i and define the admissible set of controls

u - fu() e LI , u(t) e a v t ) o1

Given a control u e U, for > 0 define u (t) = u(Ct). Call R(T) the set reachable

at time T by trajectories t + x(u,t) of (4.7) with controls in U. With these

conventions we have

-12-



L 4MA 2. Let > 0, t ; 0, ie(1,...,} u e U. Then

p P -qi = 2 &lw pg(x) (7.1)
p-1

Eg l (lE)) - 5E(g (x)) (7.2)

x(t!uFt) - x(u,Ft) - .(x(u,t)) (7.3)

R(F) - 88 R() . (7.4)

PROOF. By (4.6), W 1 (Si (x)) is a sum of terms having the form

T((x)) -L Og(0) e (WO1l) (x8)... ,O ( (x)))]

with 1) + ... + o(J) - p- I. Therefore Y(E(x)) - EP'Y (x). Thus yields (O1).

Multiplying both sides of (7.1) by C, one gets (7.2). The first equality in (7.3) holds

simply because (4.7) is an autonomous system, linear in u. Moreover

Is t
x(u,Et) - 8 (x;(ut)) = . J (E; 1 lx(u,tt)) - 6 (;g±(xluEt)))dt

1i1 0

Gronvall's lema and (7.2) now yieI4 the second equality in 17.3), from which (7.4) follows

by setting t = 1.

Notice that a control u e U is time-optimal on [0,E) iff uE  is time-optimal on

10,I). If (4.7) admits a regular time-optimal feedback up and if t + u(t) is optimal

on (0,T], then for t e 1O,T)

u (x(u.Ct)- t) U( - Ut) - uF (x(u,t)) - u (a,5lxluEt) .

Therefore we expect u. to be invariant under dilations.

-- 13-
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7. A RXANPLZ

Consider the two-dimensional system

dt
dt (x~y) 0 (u1 + sin~x + Y)u 2' (1 - cou(x + y)lu 2l 71

(x(O),y(O)) , (0,0) .

Computing the third Picard iterate for the reduced system

(xy) - (u1 + (x + y)u2, 
1/2 (x + Y)2 U2 )1 (xO),Y(Ol) (10)

and discarding terms of order > 3, one obtains the third order Taylor expansion of the

input-output map * generated by (7.1)t

3t t U

T 3(u)(t) (j u1 ()ds + ) U 01 (o))u 2 (,)ds
0 0 0

+t (j ' 1 (a 3 )do 3 ) 2 (a 2 W 2 )u 2 (aI a 1
0 0 0

t siJ (I %(O)dou 2(s)ds)
o 02

In this case ZI Z2 1 - (x,Olx e R), Z3 - *t,

W2 - ((00)), W3 - {(Oy)y e Ri

The Ohomoqenized" expansion (4.5) is

At i t • 5 o 2u(l

*(u)(t) ( * 1 ()ds, .I ( u2 (sds)
0 0 0

which exactly represents the response of

d_ (x,y) - (u1,1/2 K2,2)- (x(O),y(O)) -(010) (7.2)

If the set of admissible controls is

U - (u - 1 FU 2 ) e L1 O,-)lit2 )i ; (t)l 1 u 2 (t) - 1, vt) 0)

4 ? the reachable sets for (7.2) are

R(t) {(xy) R2 1 13 y 4 1_ + t 2 l + tIx12  113)

and the relations

-14-
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(x,y) e R(t) iff (cx,$
3
y) e Ra~t)

hold for every tA > 0. A time-optimal feedback for (7.2) is

UF(xy) (,1) on A
+ , 

up(xy) o (-1,1) on A-

with
+ 13 1 3

A {(x,y)i x > 0, y 3.. U [(x,y), x < 0, y > _lx I3 )

6 6

A- - (x,y); (-x,y) e A
+ )  

3

Notice that ur  is Invariant w.r.t. all dilations 6 (x,y) + (Ex,E Y), E > 0.

-1s-
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ABSTRACT (cont.)

map for the control system

() Y gi(x)ui, x(O) M 0
imi

or computed directly as an asymptotic limit of the corresponding vector

field gi. A useful consequence is that every control system of the form ()

can locally be regarded as an arbitrarily small C perturbation of a

nilpotent system on the same state space, up to a suitable linear rescaling of

coordinates.
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